

Certified Optical Network Associate

A unique training course from Optical Technology Training, delivered by licensed partners around the world

Certified Optical Network Associate (CONA)

Planners course

5 days

This course introduces optical networking & covers network infrastructure, as well as transmission systems that use direct detection technology. These direct detection systems may be used to provide very high capacity (up to 1.6Tb/s) Ethernet channels within data centres & commonly 100 & 400Gb/s data rates for metro data centre interconnect (DCI). LAN & campus backbones, FTTA & 5G front haul also use direct detection, as do point-to-point FTTH, full fibre business connections & many transport & utility networks. Long haul OTN systems can use direct detection systems to provide capacity of 800Gb/s+ per fibre pair over thousands of km.

You will learn what is required for satisfactory system performance of such networks & how the performance can be affected by the properties and the quality of the physical fibre infrastructure including such issues as fibre type, reflections, attenuation, chromatic dispersion & polarisation mode dispersion. You will learn how to multiply the capacity of single channel systems using SDM (parallel fibres) or by applying appropriate WDM technologies including SWDM, WWDM, CWDM or DWDM. You'll be able to extend the reach of the systems to avoid regeneration by using amplifiers, (EDFAs, Raman, SOAs) & through optical dispersion management.

Through the use of design exercises and assignments, you will learn how to design optical networking systems to provide efficient & cost-effective solutions for many network applications.

Features

- scenario based
- exercises and ongoing case study ☐ uses OTT's unique WhizzieKit virtual optical network training system
- ☐ comprehensive course manual plus support materials online
- pass the assessment to gain Certified Optical Network Associate (CONA) status

Key outcomes

- design optical links that provide cost-effective solutions for many network applications
- specify the components that are required to build a transmission link and describe how they should be configured
- ✓ design links for performance and testability
- ✓ assess options for SDM and WDM transceivers including 100G and 400G Ethernet
- ✓ determine the optical power budget of different transmission systems
- ✓ calculate the optical loss budget for a transmission link

CONA is a great course if you need a broad foundation of knowledge of optical networks It suits job roles such as: planner, project manager, operations staff, network manager. It provides the foundation for the advanced Certified Optical Network Engineer (CONE) course which covers coherent systems.

OTT's CFCE course, which covers characterisation of dark fibres & analysis of results may be of interest to you or your colleagues.

- ✓ decide when & where optical amplifiers are needed & identify suitable products
- ✓ calculate whether chromatic dispersion compensation is required for a link, & if so specify an appropriate dispersion management solution
- explain the role of an optical supervisory circuit & plan for its implementation in the network
- ✓ verify that a link design is viable in terms of power levels, chromatic dispersion limits & PMD levels
- ✓ consider options for CWDM, DWDM and Raman amplified solutions for lighting up dark fibre links

Copyright © Optical Technology Training Ltd 2012-2023+

Certified Optical Network Associate (CONA)

Associate				
BECOMING A CONA What are optical networks? The different generations The role of standards CASE STUDY Background, roles, project Introduction to WhizzieKit JNDERSTANDING LIGHT	LIGHT IN OPTICAL FIBRES How fibres work Multimode & Singlemode Launch conditions Attenuation Bend loss performance Dispersion INFRASTRUCTURE	CONNECTORS Connector styles Connectors for transceivers Connector performance Pre-terminated assemblies Inspection and cleaning Inspection standards Performance requirements for joining fibres	 OPTICAL AMPLIFIERS Benefits & drawbacks EDFAs Raman amplifiers Amplifier types Configurations, Specs & performance Implementation checklist Exercise: Backhaul 	PHOTO Photo Nu Ado RO. Exe PRACT
 Light as a wave Wavelengths & frequencies used in fibre optics Wave properties of light Using light to transfer 	OPTICAL FIBRES FOR TELECOMS NETWORKS Fibres for enterprise Fibres for telecoms Standards	 POLARITY ISSUES Simplex installations Duplex installations Installations with array connectors 	TRANSCEIVERS ☐ Light sources & transmitters ☐ Receivers & detectors ☐ Transceiver modules	□ Wh □ Wh □ Rul ON SY
information ☐ Interferometry MANAGING LIGHT	SPECIFYING FIBRE OPTIC CABLES Sourcing cable links	INFRASTRUCTURE TESTING ☐ Why test? ☐ What tests are needed	Key parametersExercise: Transceivers for 5G DISPERSION	☐ Tes
 Using passive components to manage light Managing power levels Directing light Multiplexing light Managing different 	 External and internal cable performance issues Typical constructions Cables for different environments JOINTING EXTERNAL CABLES 	 □ Analysis and extracting relevant information □ Monitoring systems SYSTEMS SYSTEMS PERFORMANCE □ Requirements for good 	 CHROMATIC DISPERSION What is it? & What causes it? Dispersion slope CD characteristics of common fibre types Dispersion limited systems 	ASSIGI Cas Wh cos
wavelengths of light INTRO TO MULTIPLEXING Electronic TDM WDM WWDM / LAN-WDM SWDM	☐ The challenges☐ Scenarios☐ Installation issues☐ Splice closures TERMINATING EXTERNAL CABLES	system performance Potential causes of performance problems designing for performance and testability POWER LEVELS IN LOSS	CD MANAGEMENT Optical v electronic DC DC fibre Bragg grating DCMs Tuneable DCMs Dispersion managed links	
 □ CWDM □ DWDM □ SDM □ Exercise: WDM v SDM Ethernet transceivers 	 The challenges Scenarios Termination location components Specifying an ODF 	LIMITED SYSTEMS Target distances for Ethernet & OTN Loss budgets Transmitter power levels	PMD What is PMD? Polarised light Polarisation in fibres	

□ Receiver power levels

AL NETWORKING

ONIC NETWORKS

- otonic network topologies
- ultiplexers
- d drop technologies
- ADMs
- ercise: Rail network

TICAL IMPLEMENTATION

- uipment configurations
- nat do I need?
- nat type?
- nere does it go?
- les and constraints

STEMS TESTING

- sts for each project stage
- st limits & acceptance eria

NMENT

- se study assignment using nizzieKit products to plan & st a solution
- eory assessment

Copyright © Optical Technology Training Ltd 2012-2023+

☐ PMD & system performance

Hello I am Michal Pěček. I am an optical communication consultant with over 25 years of experience in optical network design, management and operations. I have designed optical networks for renowned telecom companies like Verizon, Deutsche Telekom, and Telefonica. For the past 11 years I have worked at Google, designing and automating their worldwide optical transport network. With these practical insights and real-world experiences, I would be glad to guide you on your journey of discovering optical communication.

I am licensed to deliver the OTT CONA (Certified Optical Network Associate) and CONE (Certified Optical Network Engineer) courses in Europe. Target audience includes network designers and planners, project managers, software developers and other professionals working with optical transport networks. Public courses are held regularly around continental Europe.

Michal Pěček Optical Communication

Phone: +43 664 157 2808

Consultant

Email: training@michalpecek.com

Web: www.michalpecek.com

